| 2 | ||
(1 + x2)y'' + 2xy' = | ||
| x3 |
| 1 | ||
y(1)=1, y'(1)=− | ||
| 2 |
| 2 | ||
(1+x2)u'+2xu= | ||
| x3 |
| u' | −2x | ||
= | |||
| u | 1+x2 |
| C | ||
ln|u|=ln| | | | |
| 1+x2 |
| C | ||
u= | ||
| 1+x2 |
| C(x) | ||
u(x)= | ||
| 1+x2 |
| C'(x)(1+x2)−2xC(x) | 2xC(x) | 2 | ||||
(1+x2) | + | = | ||||
| (1+x2)2 | 1+x2 | x3 |
| C'(x)(1+x2)−2xC(x)+2xC(x) | 2 | ||
= | |||
| (1+x2) | x3 |
| 2 | ||
C'(x)= | ||
| x3 |
| 1 | ||
C(x)=− | +C1 | |
| x2 |
| 1 | 1 | |||
u(x)=(− | +C1) | |||
| x2 | 1+x2 |
| 1 | C1 | |||
y'(x)=− | + | |||
| x2(1+x2) | 1+x2 |
| 1 | C1 | |||
dy=(− | + | )dx | ||
| x2(1+x2) | 1+x2 |
| 1+x2−x2 | C1 | |||
dy = (− | + | )dx | ||
| x2(1+x2) | 1+x2 |
| dy | 1 | C1 | |||
= (− | + | ) | |||
| dx | x2 | 1+x2 |
| 1 | ||
y = | +C1arctg(x)+C2 | |
| x |
| C1 | 1 | |||
−1+ | =− | |||
| 2 | 2 |
| C1 | 1 | ||
= | |||
| 2 | 2 |
| π | ||
1+ | +C2=1 | |
| 4 |
| π | ||
C2=− | ||
| 4 |
| 1 | π | |||
y = | +arctg(x)− | |||
| x | 4 |
| 2 | ||
(y'(1+x2))' = | ||
| x3 |
| 1 | ||
y'(1+x2) = C− | ||
| x2 |
| 1 | 1 | 1 | ||||
y' = − | = | − | ||||
| x2(1+x2) | 1+x2 | x2 |
| 1 | ||
y = atanx + | + C1 | |
| x |
| π | ||
y(1)=1 ⇒ C1 = − | ||
| 4 |