matematykaszkolna.pl
Szkicowanie funkcji wymiernej Patryk: Witam, Czy mógłby mi ktoś wytłumaczyć jak naszkicować wykres takiej funkcji wymiernej? Gdy szkicowałem funkcję gdzie cały wzór był pod modułem to było proste bo wszystko co poniżej 0 odbijałem, ale w tym przykładzie moduł mam w mianowniku. Rozważyłem jak dotąd dwa przypadki i mam dwa różne wzory i dwie asymptoty pionowe.
 6 
f(x) =

 |x|−3 
|x| − 3 = 0 x = 3 lub x = −3 // asymptoty Dla x ≥ 0
6 

x−3 
Dla x < 0
6 

−x−3 
4 gru 15:50
Jerzy: rysunek
4 gru 15:51
Jerzy:
 6 
Dla x < 0 masz f(x) = −

 x + 3 
4 gru 15:57
a@b: rysunek
 6 
1/ rysujesz wykres niebieski y=

 x−3 
Punkt przecięcia niebieskiego wykresu z osią OY (0,−2) 2/ odbijasz wszystko co po prawej stronie na lewą wraz z wykresem po prawej
 6 
i otrzymujesz y=

 |x|−3 
i to wszystko
4 gru 15:59
Jerzy: Odbijasz , bo to jest funkcja parzysta, czyli: f(−x) = f(x) i wykres jest symetryczny względem osi OY.
4 gru 16:01
a@b: Jeszcze zapomniałam narysować odbitej asymptoty x= −3 ( po lewej stronie
4 gru 16:02
Patryk: Ok, dziękuję za rysunek. A gdyby cały mianownik był pod modułem to czym różnił by się wykres?
4 gru 16:10
Patryk: Bo może być wiele przypadków, np. licznik pod modułem, mianownik pod modułem i chciałbym zrozumieć na czy polegała by różnica
4 gru 16:13
Jerzy: Wtedy to co pod osią OX odbijasz nad oś.
4 gru 16:15
Jerzy:
 6 
To co napisałem dotyczy tej funkcji w postaci f(x) =

 |x − 3| 
4 gru 16:16