3log4 (2n) − log4 n+12 − log4 (n2+2)
| 8n3 * 2 | ||
an = log4 ( | ) → log4 16 = ... | |
| (n+1)(n2 + 2) |
| n+1 | ||
log4(8n3) − log4( | ) − log4(n2+2) | |
| 2 |
| 2*8n3 | ||
log4( | ) − log4(n2+2) | |
| n+1 |
| 16n3 | 16n3 | |||
log4( | ) = log4( | ) | ||
| (n+1)(n2+2) | n3 + n2 +2n +2 |
| 16n3 | ||
limx→∞ log4( | ) = log4(16) = 2 | |
| n3 + n2 +2n +2 |