Proszę o pomoc w rozwiązaniu
Jelonek22: Sprawdź która z liczb zbioru A jest pierwiastkiem wielomianu W(x) jeżeli:
W(x) = x4 − 3x3 + 3x2 + 7x + 6 A= {1,−1,2,3}
22 lis 23:45
Szkolniak: sprawdzasz czy W(1)=0, jeśli tak, to liczba 1 jest pierwiastkiem wielomianu W(x)
podobnie z kolejnymi liczbami
23 lis 01:02
Mariusz:
x
4 − 3x
3 + 3x
2 + 7x + 6
(x
4 − 3x
3)−(−3x
2 − 7x − 6)
| 9 | | 3 | |
(x4 − 3x3+ |
| x2)−(− |
| x2− 7x − 6) |
| 4 | | 4 | |
| 3 | | 3 | |
(x2− |
| x)2−(− |
| x2− 7x − 6) |
| 2 | | 4 | |
| 3 | | y | | 3 | | 3 | | y2 | |
(x2− |
| x+ |
| )2−((y− |
| )x2+(− |
| y−7)+ |
| −6) |
| 2 | | 2 | | 4 | | 2 | | 4 | |
| y2 | | 3 | | 3 | |
4( |
| −6)(y− |
| )−(− |
| y−7)2=0 |
| 4 | | 4 | | 2 | |
| 3 | | 3 | |
(y2−24)(y− |
| )−( |
| y+7)2=0 |
| 4 | | 2 | |
| 3 | | 9 | |
y3− |
| y2−24y+18−( |
| y2+21y+49)=0 |
| 4 | | 4 | |
y
3−3y
2−45y−31=0
(y
3−3y
2+3y−1)−48(y−1)−78=0
(y−1)
3−48(y−1)−78=0
y−1=u+v
(u+v)
3=u
3+3u
2v+3uv
2+v
3
(u+v)
3=u
3+v
3+3uv(u+v)
u
3+v
3+3uv(u+v)−48(u+v)−78=0
u
3+v
3−78+3(u+v)(uv−16)=0
u
3+v
3−78=0
3(u+v)(uv−16)=0
u
3+v
3=78
uv=16
u
3+v
3=78
u
3v
3=4096
t
2−78t+4096=0
(t−39)
2−1521+4096=0
(t−39)
2+2575=0
(t−39−5
√103i)(t−39+5
√103i)=0
y−1=
3√39+5√103i+
3√39−5√103i
y=1+
3√39+5√103i+
3√39−5√103i
| 3 | | y | | 3 | | 3 | | y2 | |
(x2− |
| x+ |
| )2−((y− |
| )x2+(− |
| y−7)+ |
| −6) |
| 2 | | 2 | | 4 | | 2 | | 4 | |
| 3 | | y | | 3 | | | |
(x2− |
| x+ |
| )2−(y− |
| )(x− |
| )2 |
| 2 | | 2 | | 4 | | | |
| 3 | | y | | | |
(x2− |
| x+ |
| )2−(√y−34x− |
| )2 |
| 2 | | 2 | | 2√y−34 | |
| 3 | | y | | | |
(x2+(− |
| −√y−34)x+ |
| + |
| ) |
| 2 | | 2 | | 2√y−34 | |
| 3 | | y | | | |
(x2+(− |
| +√y−34)x+ |
| − |
| ) |
| 2 | | 2 | | 2√y−34 | |
| 3 | | 1 | | | |
(x2−( |
| +√y−34)x+ |
| (y+ |
| )) |
| 2 | | 2 | | √y−34 | |
| 3 | | 1 | | | |
(x2−( |
| −√y−34)x+ |
| (y− |
| ) |
| 2 | | 2 | | √y−34 | |
Można też ten wielomian zapisać w postaci sumy kwadratów np
| 3 | | 13 | | 17 | | 3151 | |
W(x)=(x2− |
| x− |
| )2+(2x+ |
| )2+ |
| |
| 2 | | 8 | | 32 | | 1024 | |
Wychodzi że wszystkie pierwiastki są zespolone
23 lis 10:21
ICSP: W(x) = x4 − 3x3 + 3x2 + 7x + 6 , A = {−1 , 1 , 2 , 3 }
Liczba a jest pierwiastkiem wielomianu W jeśli W(a) = 0.
W(1) = 1 − 3 + 3 + 7 + 6 = 14 ≠ 0
W(2) = 24 ≠ 0
W(3) = 54 ≠ 0
W(−1) = 6 ≠ 0
żadna.
23 lis 10:49
daras: @Mariusz odlot ?
23 lis 17:12