Mam problem z taką całką:
| dx | ||
∫ | ||
| x+√x2−x+1 |
| dx | x−√x2−x+1 | |||
∫ | = ∫ | dx = | ||
| x+√x2−x+1 | x2−x2+x−1 |
| x−√x2−x+1 | x | √x2−x+1 | ||||
= ∫ | dx = ∫ | dx − ∫ | dx = | |||
| x−1 | x−1 | x−1 |
| x−1+1 | √(x−1)2+x | |||
= ∫ | dx − ∫ | dx = | ||
| x−1 | x−1 |
| dx | √(x−1)2+x | |||
= ∫dx + ∫ | − ∫ | dx = | ||
| x−1 | x−1 |
| √t2+t+1 | ||
= x +ln|x−1| − ∫ | dt = | |
| t |
proszę o pomoc
mam jeszcze jedno pytanie, jakim sposobem rozwiązuje się całki typu:
∫x2√9−x2 czy ∫√36−x2
| a2 − x2 | ||
J = ∫√a2 − x2dx = ∫ | dx = | |
| √a2 − x2 |
| a2dx | x2dx | |||
∫ | − ∫ | = J1 − J2 | ||
| √a2 − x2 | √a2 − x2 |
| dx | ||
J1 = a2∫ | ||
| √a2 − x2 |
| adt | x | |||
J1 = a2∫ | = a2arcsin(t) = a2*arcsin | |||
| a*√1 − t2 | |a| |
| x*x*dx | ||
J2 = ∫ | ||
| √a2 − x2 |
| xdx | ||
u = x dv = | ||
| √a2 − x2 |
| x | ||
J = a2*arcsin | + x*√a2 − x2 − J | |
| |a| |
| x | ||
2*J = a2*arcsin | + x*√a2 − x2 | |
| |a| |
| 1 | x | 1 | ||||
J = | a2*arcsin | + | x*√a2 − x2 + C | |||
| 2 | |a| | 2 |
. Miałeś powiedzieć, że nie schodzisz z forum
. Bo ruch, a ja
samotnie.
| −1 | ||
du = dx v = | √(9 − x2)3 | |
| 3 |
| −1 | 1 | −1 | 1 | |||||
J = | x√(9 − x2)3 + | ∫√(9 − x2)3dx = | x√(9 − x2)3 + | J1 | ||||
| 3 | 3 | 3 | 3 |
| −1 | 1 | |||
J = | x√(9 − x2)3 + | (9∫√9 − x2dx − J) | ||
| 3 | 3 |
| −1 | 1 | |||
J = | x√(9 − x2)3 + 3∫√9 − x2dx − | J | ||
| 3 | 3 |
| 4 | −1 | ||
J = | x√(9 − x2)3 + 3∫√9 − x2dx | ||
| 3 | 3 |
| −1 | 9 | |||
J = | x√9 − x2 + | ∫√9 − x2dx + C | ||
| 4 | 4 |