n−1 | ||
Lim n−> niesk. ( | ) 2n+1 | |
n+3 |
n−1 | n+3 − 4 | 1 | ||||||||||
( | )2n+1 = ( | )2n+1 = (1 + | )2n+1 = | |||||||||
n+3 | n+3 |
|
n−1 | n+3−4 | 4 | |||
= | = 1− | ||||
n+3 | n+3 | n+3 |
4 | 2n + 1 | |||
= lim [(1 − | )n+3]k , gdzie k = | i lim k = 2, | ||
n+3 | n + 3 |
n−1 | n−1 | (1−1/n)2n | ||||
( | )2n+1 = | |||||
n+3 | n+3 | (1+3/n)2n |
a | ||
(1+ | }bn →eab | |
n |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |