| dx | x2*dx | dx | ||||
1) ∫ | 2) ∫ | 3)∫tg2x* | ||||
| sinx | √(x+1)2−1 | cosx |
| sinx | sinx | |||
1) Np, tak: = ∫ | dx = ∫ | dx i podstawienie: cosx = t | ||
| sin2x | 1 − cos2x |
| 1 | 1 | |||
∫ | dx = ∫ | dx = ... | ||
| sinx | 2 cos2(x/2) * tg(x/2) |
| x | 1 | |||
1) lub od razu podstawienie: t = tg( | ) , co da ci: ∫ | dt = ln|t| + C | ||
| 2 | t |
| x2 | ||
∫ | dx | |
| √x2+2x |
| t2 | ||
x= | ||
| 2t+2 |
| t2+2t | ||
t−x= | ||
| 2t+2 |
| 2t(2t+2)−2t2 | ||
dx= | dt | |
| (2t+2)2 |
| 2t2+4t | ||
dx= | dt | |
| (2t+2)2 |
| t4 | 2t+2 | 2(t2+2t) | ||
∫ | dt | |||
| (2t+2)2 | t2+2t | (2t+2)2 |
| 1 | t4 | ||
∫ | dt | ||
| 4 | (t+1)3 |
| 1 | ((t+1)−1)4 | ||
∫ | dt | ||
| 4 | (t+1)3 |
| 1 | ((t+1)4−4(t+1)3+6(t+1)2−4(t+1)+1 | ||
∫ | dt | ||
| 4 | (t+1)3 |
| 1 | dt | dt | dt | ||||
(∫(t+1)dt−4∫dt+6∫ | −4∫ | +∫ | ) | ||||
| 4 | t+1 | (t+1)2 | (t+1)3 |
| 1 | t+1 | 4 | 1 | 1 | ||||
( | −4(t+1)+ | − | +6ln(t+1))+C | |||||
| 4 | 2 | t+1 | 2 | (t+1)2 |
| 3t + sh t ch t − 4 sh t | ||
Druga całka = ∫(ch t − 1)2 dt = | ||
| 2 |
| x2 | ||
∫ | dx | |
| √x2+2x |
| 2t2 | ||
x= | ||
| 1−t2 |
| 2 | ||
x=−2+ | ||
| 1−t2 |
| 2t | ||
(x+2)t= | ||
| 1−t2 |
| 4t(1−t2)+2t(2t2) | ||
dx= | dt | |
| (1−t2)2 |
| 4t | ||
dx= | dt | |
| (1−t2)2 |
| 4t4 | 1−t2 | 4t | ||
∫ | dt | |||
| (1−t2)2 | 2t | (1−t2)2 |
| 8t4 | ||
∫ | dt | |
| (1−t2)3 |