b | c | b | b2 | b2 | c | |||||||
ax2+bx+c=a(x2+ | x+ | )= a(x2+ | x+ | − | + | ) | ||||||
a | a | a | 4a2 | 4a2 | a |
b | b2−4ac | |||
=a[(x+ | )2− | )] | ||
2a | 4a2 |
5 | 1 | 5 | 1 | 25 | ||||||
3x2 + 5x − 1 = 3( x2 + | x − | ) = 3((x + | )2 − | − | ) = | |||||
3 | 3 | 6 | 3 | 36 |
5 | 37 | |||
=3((x + | )2 − | ) | ||
6 | 36 |
5 | 1 | 5 | 5 | 1 | ||||||
y = 3(x2 + | − | ) = 3*[(x + | )2 − ( | )2 − | ] | |||||
3 | 3 | 6 | 3 | 3 |
5 | ||
i widać ,że funkcja osiaga minimum dla: x = − | ||
6 |