b | ||
Zastosuj podstwienie y=x− | ||
3a |
1 | 3 | 3 | 1 | |||||
(x+ | )3=(x3+ | x2+ | x+ | ) | ||||
6 | 6 | 36 | 216 |
1 | 1 | 1 | 1 | |||||
(x+ | )3=x3+ | x2+ | x+ | |||||
6 | 2 | 12 | 216 |
1 | 1 | 1 | ||||
2(x+ | )3=2x3+x2+ | x+ | ||||
6 | 6 | 108 |
1 | 13 | 1 | 13 | 1 | ||||||
2(x+ | )3− | (x+ | )=2x3+x2−2x− | + | ||||||
6 | 6 | 6 | 36 | 108 |
1 | 13 | 1 | 19 | |||||
2(x+ | )3− | (x+ | )=2x3+x2−2x− | |||||
6 | 6 | 6 | 54 |
1 | 13 | 1 | 343 | |||||
2(x+ | )3− | (x+ | )+ | =2x3+x2−2x+6 | ||||
6 | 6 | 6 | 54 |
1 | 13 | 1 | 343 | |||||
2(x+ | )3− | (x+ | )+ | =0 | ||||
6 | 6 | 6 | 54 |
1 | ||
y=x+ | ||
6 |
13 | 343 | |||
y3− | y+ | =0 | ||
12 | 108 |
13 | 343 | |||
u3+v3+3uv(u+v)− | (u+v)+ | =0 | ||
12 | 108 |
343 | 13 | |||
u3+v3+ | +3(u+v)(uv− | )=0 | ||
108 | 12 |
343 | ||
u3+v3+ | =0 | |
108 |
13 | ||
3(u+v)(uv− | )=0 | |
36 |
343 | ||
u3+v3+ | =0 | |
108 |
13 | ||
uv− | =0 | |
36 |
343 | ||
u3+v3=− | ||
108 |
13 | ||
uv= | ||
36 |
343 | ||
u3+v3=− | ||
108 |
2197 | ||
u3v3= | ||
46656 |
343 | 2197 | |||
t2+ | t+ | =0 | ||
108 | 46656 |
343 | 117649−2197 | |||
(t+ | )2− | =0 | ||
216 | 46656 |
343 | 115452 | |||
(t+ | )2− | =0 | ||
216 | 46656 |
−343−√115452 | −343+√115452 | |||
(t− | )(t− | )=0 | ||
216 | 216 |
−343−6√3207 | −343+6√3207 | |||
(t− | )(t− | )=0 | ||
216 | 216 |
1 | ||
y= | (3√−343−6√3207+3√−343+6√3207) | |
6 |
1 | 1 | |||
x+ | = | (3√−343−6√3207+3√−343+6√3207) | ||
6 | 6 |
1 | ||
x = | (3√−343−6√3207+3√−343+6√3207−1) | |
6 |
1 | 13 | |||
x = | (3√−343−6√3207+ | −1) | ||
6 | 3√−343−6√3207 |
1 | ||
u= | 3√−343−6√3207 | |
6 |
1 | ||
v= | 3√−343+6√3207 | |
6 |
343 | ||
u3+v3=− | ||
108 |
13 | ||
uv= | ||
36 |
13 | ||
uv= | ||
36 |