(x−1)n | ||
1) ∑n=0∞ | x0 = 1 | |
2n−1 |
1 | ||
an = | ||
2n−1 |
1 | ||
an+1 = | ||
2n+1 |
1 | ||
R = | ||
g |
an+1 | 2n−1 | |||
g = limn−>∞| | | = limn−>∞| | | = | ||
an | 2n+1 |
n(2−1n) | ||
= limn−>∞| | | = 1 | |
n(2+1n) |
1 | 1 | |||
R = | = | = 1 | ||
g | 1 |
3n | ||
2) ∑n=0∞ | (x+2)n x0 = −2 | |
n! |
3n | ||
an = | ||
n! |
3n+1 | ||
an+1 = | ||
(n+1)! |
3n+1 | 3 | |||
g = limn−>∞| | | = limn−>∞| | | | ||
n!(n+1) | n+1 |
3 | ||
= limn−>∞| | | = 0 | |
n(1+1n |
1 | 1 | |||
R= | = | =∞ | ||
g | 0 |
2n−1 | n(2−1/n) | ||
= | |||
2n+1 | n(2+1/n) |
2n−1 | 2−1/n | n(2−1/n) | |||
= | = | ||||
2n+1 | 2+1/n | n(2+1/n) |
2−1/n | |
2+1/n |
n(2−1/n) | |
. | |
n(2+1/n) |
n(2−1/n) | |
n(2+1/n) |
2−1/n | |
2+1/n |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |