(3n+4)(n−1) | ||
an=an−1+3*n−1=a1+ | ||
2 |
an | ||
A(x)=∑n=0∞ | xn | |
n! |
(n+1)n | ||
=a0+3 | −n | |
n |
3n2+3n−2n | ||
=a0+ | ||
2 |
n(3n+1) | ||
=a0+ | ||
2 |
1 | ||
∑n=0∞xn= | ||
1−x |
d | d | 1 | |||
(∑n=0∞xn)= | ( | ) | |||
dx | dx | 1−x |
1 | ||
∑n=0∞nxn−1=− | (−1) | |
(1−x)2 |
1 | ||
∑n=1∞nxn−1= | ||
(1−x)2 |
1 | ||
∑n=0∞(n+1)xn= | ||
(1−x)2 |
3 | 4 | |||
A(x)−a0=xA(x)+ | − | +1 | ||
(1−x)2 | 1−x |
3−4(1−x) | ||
A(x)−a0=xA(x)+ | +1 | |
(1−x)2 |
−1+4x | ||
A(x)−a0=xA(x)+ | +1 | |
(1−x)2 |
−1+4x | ||
A(x)(1−x)=a0+1+ | ||
(1−x)2 |
a0+1 | −1+4x | |||
A(x)= | + | + | ||
1−x | (1−x)3 |
a0+1 | −4+4x+3 | |||
A(x)= | + | |||
1−x | (1−x)3 |
a0+1 | 4 | 3 | ||||
A(x)= | − | + | ||||
1−x | (1−x)2 | (1−x)3 |
1 | ||
∑n=0∞(n+1)xn= | ||
(1−x)2 |
d | d | 1 | |||
(∑n=0∞(n+1)xn)= | ( | ) | |||
dx | dx | (1−x)2 |
−2 | ||
∑n=0∞(n(n+1))xn−1= | (−1) | |
(1−x)3 |
2 | ||
∑n=1∞(n(n+1))xn−1= | ||
(1−x)3 |
2 | ||
∑n=0∞((n+1)(n+2))xn= | ||
(1−x)3 |
3 | ||
A(x)=(∑n=0∞(a0+1+ | (n+1)(n+2)−4(n+1))xn) | |
2 |
1 | ||
A(x)=(∑n=0∞(a0+1+ | (n+1)((3n+6−8)))xn) | |
2 |
1 | ||
A(x)=(∑n=0∞(a0+1+ | (n+1)(3n−2))xn) | |
2 |
1 | ||
A(x)=(∑n=0∞(a0+ | ((n+1)(3n−2)+2))xn) | |
2 |
1 | ||
A(x)=(∑n=0∞(a0+ | n(3n+1))xn | |
2 |
1 | ||
an=a0+ | n(3n+1) | |
2 |