Oblicz całki
Crook: | x2−4x−7 | |
a) ∫ |
| dx |
| (x2+2x+4)(x+3) | |
b∫e
xsin(e
x)dx
29 cze 15:57
Jerzy:
b) podstawiasz t = ex i dostajesz: ∫sintdt
29 cze 16:04
Mariusz:
(x
2+2x+4)−6(x+3)=x
2−4x−14
x−1
x
2+2x+4:x+3
x
2+3x
−x+4
−x−3
7
(x−1)(x+3)+7=x
2+2x+4
7=(x
2+2x+4)−(x−1)(x+3)
(x
2+2x+4)−6(x+3)+(x
2+2x+4)−(x−1)(x+3)=x
2−4x−14+7
2(x
2+2x+4)−(x+5)(x+3)=x
2−4x−7
| 2(x2+2x+4)−(x+5)(x+3) | | x2−4x−7 | |
∫ |
| dx=∫ |
| dx |
| (x2+2x+4)(x+3) | | (x2+2x+4)(x+3) | |
| 2 | | x+1 | | 4 | |
∫ |
| dx−∫ |
| dx−∫ |
| dx |
| x+3 | | x2+2x+4 | | (x+1)2+3 | |
| 2 | | x+1 | | 4 | | | |
∫ |
| dx−∫ |
| dx− |
| ∫ |
| dx |
| x+3 | | x2+2x+4 | | √3 | | | |
| 1 | | 4√3 | | √3 | |
=2ln|x+3|− |
| ln|x2+2x+4|− |
| arctg( |
| (x+1))+C |
| 2 | | 3 | | 3 | |
29 cze 20:17