| 1 | ||
sin23x − √2sin3x + | = 0 | |
| 2 |
| 1 | ||
t2 − √2t + | = 0 | |
| 2 |
| √2 | ||
Δ=0, t = | ||
| 2 |
| √2 | ||
Czyli: sin3x = | ||
| 2 |
| π | π | |||
3x = | + 2kπ lub 3x = π − | + 2kπ | ||
| 4 | 4 |
| π | 2 | 3 | ||||
x = | + | kπ 3x = | π + 2kπ | |||
| 12 | 3 | 4 |
| π | 2 | |||
x = | + | kπ, k∊C. | ||
| 4 | 3 |