| d(y3+2xy+x2) | 3 | ||
= 3y2+2x = 0 ⇒ x = − | y2 | ||
| dy | 2 |
| 9 | ||
y3−3y3+ | y4 = 0 | |
| 4 |
| 8 | ||
y = 0 lub y = | ||
| 9 |
| 32 | ||
x = 0 lub x = − | ||
| 27 |
| 1 | 1 | |||
y3−2y* | + | = 0 | ||
| n | n2 |
| 2 | 1 | |||
Δ = −( | )3+( | )2 | ||
| 3n | 2n2 |
| 32 | ||
x = − | +ε | |
| 27 |
| 32 | 32 | |||
y3+2y(− | +ε)+(− | +ε)2 = 0 | ||
| 27 | 27 |
| 2 | 32 | 1 | 32 | |||||
Δ = ( | [− | +ε])3+( | (− | +ε)2)2 | ||||
| 3 | 27 | 2 | 27 |
| 64 | 324 | |||
→ −( | )3+ | ≈ 0,99 > 0, dla ε → 0 | ||
| 81 | 274*4 |
| 32 | 32 | |||
(− | −ε, − | +ε) | ||
| 27 | 27 |
| 32 | ||
Δ > 0 ⇔ x>0 lub x < − | ||
| 27 |
| 32 | ||
jeśli jesteśmy w dowolnie małym otoczeniu − | , to od strony dodatniej będziemy | |
| 27 |