x+2y | ||
rozwiąż równanie różniczkowe: y'= | ||
x |
dy | dt | ||
= t + x | |||
dx | dx |
dt | ||
t + x | = 1+2t | |
dx |
dt | dx | ||
= | |||
1+t | x |
y' − 2y/x | ||
(y/x2)' = y'/x2 − 2y/x3 = | = 1/x2= − (1/x)' | |
x2 |
2 | ||
y'− | y=1 | |
x |
x+2y | |
−y'=0 | |
x |
1 | ||
μ1(x)= | ||
x2 |
x+2y | ||
P(x,y)= | ||
x |
1 | |||||||||||
μ2(x,y)= | |||||||||||
|
1 | ||
μ2(x,y)= | ||
x+y |
| |||||||
=C1 | |||||||
|
x2 | |
=C1 | |
x+y |
x+y | 1 | ||
= | |||
x2 | C1 |
y | 1 | ||
+ | =C | ||
x2 | x |