| x+2y | ||
rozwiąż równanie różniczkowe: y'= | ||
| x |
| dy | dt | ||
= t + x | |||
| dx | dx |
| dt | ||
t + x | = 1+2t | |
| dx |
| dt | dx | ||
= | |||
| 1+t | x |
| y' − 2y/x | ||
(y/x2)' = y'/x2 − 2y/x3 = | = 1/x2= − (1/x)' | |
| x2 |
| 2 | ||
y'− | y=1 | |
| x |
| x+2y | |
−y'=0 | |
| x |
| 1 | ||
μ1(x)= | ||
| x2 |
| x+2y | ||
P(x,y)= | ||
| x |
| 1 | |||||||||||
μ2(x,y)= | |||||||||||
|
| 1 | ||
μ2(x,y)= | ||
| x+y |
| |||||||
=C1 | |||||||
|
| x2 | |
=C1 | |
| x+y |
| x+y | 1 | ||
= | |||
| x2 | C1 |
| y | 1 | ||
+ | =C | ||
| x2 | x |