√x2+16 | ||
f | dx | |
x4 |
√x2+16 | ||
∫ | dx= | |
x4 |
t2−16 | ||
x= | ||
2t |
2t*2t−2(t2−16) | ||
dx= | dt | |
4t2 |
t2+16 | ||
dx= | dt | |
2t2 |
t2+16 | ||
t−x= | ||
2t |
t2+16 | 16t4 | t2+16 | ||
∫ | dt | |||
2t | (t2−16)4 | 2t2 |
4t(t2+16)2 | ||
∫ | dt | |
(t2−16)4 |
2(u+32)2 | ||
∫ | du | |
u4 |
2u2+128u+2048 | ||
∫ | du | |
u4 |
2 | 128 | 2048 | ||||
∫ | du+∫ | du+∫ | du | |||
u2 | u3 | u4 |
2 | 64 | 2048 | ||||
=− | − | − | ||||
u | u2 | 3u3 |
2 | 64 | 2048 | 1 | ||||
=− | − | − | +C | ||||
t2−16 | (t2−16)2 | 3 | (t2−16)3 |
2 | 64 | |||
=− | − | |||
(x+√x2+16)2−16 | ((x+√x2+16)2−16)2 |
2048 | 1 | ||
− | +C | ||
3 | ((x+√x2+16)2−16)3 |
√x2+16 | 1 | ch2 t | ||||
∫ | dx = | ∫ | dt | |||
x4 | 128 | sh4 t |
1 | dt | 1 | ||||
= | ∫cth2t | = | cth3t | |||
128 | sh2t | 3*128 |
√x2+16 | ||
cth t = | ||
4x |
√x2+16 | ||
∫ | dx | |
x4 |
8t | ||
x= | ||
1−t2 |
8(1−t2)−(−2t)8t | ||
dx= | dt | |
(1−t2)2 |
8t2+8 | ||
dx= | dt | |
(1−t2)2 |
4t2+4 | ||
xt+4= | ||
1−t2 |
4t2+4 | (1−t2)4 | 8t2+8 | ||
∫ | dt | |||
1−t2 | 4096t4 | (1−t2)2 |
1 | (t2+1)2(1−t2) | ||
∫ | dt | ||
128 | t4 |
1 | (1−t4)(1+t2) | ||
∫ | dt | ||
128 | t4 |
1 | 1+t2−t4−t6 | ||
∫ | dt | ||
128 | t4 |
1 | dt | dt | ||||
= | (∫ | +∫ | −∫dt−∫t2dt) | |||
128 | t4 | t2 |
1 | 1 | 1 | t3 | |||||
= | (− | − | −t− | )+C | ||||
128 | 3t3 | t | 3 |
1 | (x2+16)3/2 | |||
Wynik = | ||||
3*4096 | x3 |
√x2+16 | 1 | √x2+16 | 1 | 1 | x | |||||
∫ | dx=− | + | ∫ | dx | ||||||
x4 | 3 | x3 | 3 | x3 | √x2+16 |
√x2+16 | 1 | √x2+16 | 1 | 1 | |||||
∫ | dx=− | + | ∫ | dx | |||||
x4 | 3 | x3 | 3 | x2√x2+16 |
√x2+16 | 1 | √x2+16 | 1 | 16+x2−x2 | |||||
∫ | dx=− | + | ∫ | dx | |||||
x4 | 3 | x3 | 48 | x2√x2+16 |
√x2+16 | 1 | √x2+16 | 1 | √x2+16 | |||||
∫ | dx=− | + | ∫ | dx | |||||
x4 | 3 | x3 | 48 | x2 |
1 | 1 | |||
− | ∫ | dx | ||
48 | √x2+16 |
√x2+16 | 1 | √x2+16 | 1 | √x2+16 | dx | ||||||
∫ | dx=− | + | (− | +∫ | ) | ||||||
x4 | 3 | x3 | 48 | x | √x2+16 |
1 | 1 | |||
− | ∫ | dx | ||
48 | √x2+16 |
√x2+16 | 1 | √x2+16 | 1 | √x2+16 | ||||
∫ | dx=− | − | +C | |||||
x4 | 3 | x3 | 48 | x |
ch t | √x2+16 | |||
x=4 sh t, (cth t)' = 1/sh2t, cth t = | = | |||
sh t | x |
√sh2t + 16 | 1 | ch2t | ||||
całka = ∫ | 4cht dt = | ∫ | dt | |||
44 sh4t | 16 | sh4t |
1 | 1 | (x2+16)3/2 | ||||
= | * | cth3t = | ||||
16 | 3 | 48 x3 |
1 | √1+y2 | |||
całka = | ∫ | dy. | ||
16 | y4 |
1 | cos t | 1 | 1 | ||||
całka = | ∫ | dt = − | |||||
16 | sin4 | 48 | sin3t |
1 | ||
Może zgubiłem, pewnie (cth t)' = − | . | |
sh2t |