| y | ||
Rozwiąż 2y' + | = −x2y3 | |
| x |
| 1 | y' | |||
u = | ; u' = −2 | |||
| y2 | y3 |
| 1 | ||
y'+ | y=−x2y3 | |
| 2x |
| 1 | ||
μ(x,y)=e(1−3)∫ | dxy−3 | |
| 2x |
| 1 | ||
μ(x,y)= | ||
| xy3 |
| 1 | 1 | x2y3 | |||
y'+ | =− | ||||
| xy3 | 2x2y2 | xy3 |
| 1 | y' | 1 | ||
+ | =−x | |||
| x | y3 | 2x2y2 |
| d | 1 | d | 1 | 1 | 1 | 1 | |||||
(− | )= | (− | )= | +(−U{ | |||||||
| dx | 2xy2 | dx | 2x | y2 | 2 | x2y2 |
| y' | ||
1}{2x}(−2 | )) | |
| y3 |
| d | 1 | ||
(− | )=−x | ||
| dx | 2xy2 |
| 1 | −x2 | |||
− | = | +C1 | ||
| 2xy2 | 2 |
| 1 | |
=−x3+2C1x | |
| y2 |
| 1 | ||
y2= | ||
| −x3+2C1x |
| 1 | ||
y=± | ||
| −x3+Cx |
| 1 | 1 | |||
y' + | y=− | x2y3 | ||
| 2x | 2 |
| d | 1 | x | |||
(− | )=− | ||||
| dx | 2xy2 | 2 |
| 1 | x2 | |||
− | =− | +C1 | ||
| 2xy2 | 4 |
| 1 | x3 | ||
= | −2C1x | ||
| y2 | 2 |
| 1 | x3−4C1x | ||
= | |||
| y2 | 2 |
| 2 | ||
y2= | ||
| x3−4C1x |
| 2 | ||
y2= | ||
| x3+Cx |
| √2 | ||
y=± | ||
| √x3+Cx |