Pomocy
Proszę: Oblicz całkę ∫x2 sin2 xdx
3 cze 23:36
wredulus_pospolitus: dwa razy przez części zapewne
4 cze 00:20
wredulus_pospolitus:
| x3 | | x3 | |
∫x2sin2x dx = |
| sin2x − ∫4xsinxcosx dx = |
| − 2∫xsin(2x) dx = |
| 3 | | 3 | |
| x3 | | x2 | |
= |
| − 2( |
| sin(2x) − 2∫cos(2x) dx) = ... zostaje ostatni krok i gotowe |
| 3 | | 2 | |
4 cze 00:25
Bleee:
Ale ja głupotę napisałem
4 cze 10:18
Jerzy:
| x3 | | x3 | |
Poprawimy ... = |
| sin2x − ∫2sinxcosxdx = = |
| sin2x − ∫sin(2x)dx |
| 3 | | 3 | |
4 cze 10:48
Mariusz:
∫xsin(x)sin(x)dx=−xsin(x)cos(x)+∫cos(x)(sin(x)+xcos(x))dx
∫xsin(x)sin(x)dx=−xsin(x)cos(x)+∫sin(x)cos(x)dx+∫xcos
2(x)dx
∫xsin
2(x)dx=−xsin(x)cos(x)+∫sin(x)cos(x)dx+∫x(1−sin
2(x))dx
∫xsin
2(x)dx=−xsin(x)cos(x)+∫sin(x)cos(x)dx+∫xdx−∫xsin
2(x)dx
2∫xsin
2(x)dx=−xsin(x)cos(x)+∫sin(x)cos(x)dx+∫xdx
| 1 | | 1 | |
2∫xsin2(x)dx=−xsin(x)cos(x)+ |
| sin2(x)+ |
| x2+C1 |
| 2 | | 2 | |
| 1 | | 1 | | 1 | |
∫xsin2(x)dx=− |
| xsin(x)cos(x)+ |
| sin2(x)+ |
| x2+C |
| 2 | | 4 | | 4 | |
4 cze 16:02
Mariusz:
∫x
2sin
2(x)dx=−x
2sin(x)cos(x)+∫cos(x)(2xsin(x)+x
2cos(x))dx
∫x
2sin
2(x)dx=−x
2sin(x)cos(x)+2∫xcos(x)sin(x)dx+∫x
2cos
2(x)dx
∫x
2sin
2(x)dx=−x
2sin(x)cos(x)+2∫xcos(x)sin(x)dx+∫x
2(1−sin
2(x))dx
∫x
2sin
2(x)dx=−x
2sin(x)cos(x)+2∫xcos(x)sin(x)dx+∫x
2dx−∫x
2sin
2(x)dx
| 1 | |
2∫x2sin2(x)dx=−x2sin(x)cos(x)+ |
| x3+2∫xcos(x)sin(x)dx |
| 3 | |
∫xcos(x)sin(x)dx=−xcos(x)cos(x)+∫cos(x)(cos(x)−xsin(x))dx
∫xcos(x)sin(x)dx=−xcos(x)cos(x)+∫cos
2(x)dx−∫xcos(x)sin(x)dx
2∫xcos(x)sin(x)dx=−xcos(x)cos(x)+∫cos
2(x)dx
∫cos
2(x)dx=cos(x)sin(x)−∫sin(x)(−sin(x))dx
∫cos
2(x)dx=cos(x)sin(x)+∫sin
2(x)dx
∫cos
2(x)dx=cos(x)sin(x)+∫(1−cos
2(x))dx
∫cos
2(x)dx=cos(x)sin(x)+∫dx−∫cos
2(x)dx
2∫cos
2(x)dx=cos(x)sin(x)+∫dx
4 cze 16:18
Jerzy:
Faktycznie,dużo prostszy sposób.
4 cze 16:26