x2 | ||
∫(x−1)dx = ∫x dx + ∫(−1)dx = | −x | |
2 |
t2 | (x−1)2 | |||
∫(x−1)dx = |t=x−1 ; dt = 1dx| = ∫t dt = | = | |||
2 | 2 |
x2 | ||
= | − x +C | |
2 |
(x−1)2 | ||
= | +C | |
2 |
(x−1)2 | x2 − 2x + 1 | x2 | x2 | ||||
+ C = | + C = | − x + 0.5 + C = | − x + C1 | ||||
2 | 2 | 2 | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |