| 2 | m | |||
Wykaż że przy dodatnim m pierwiastki x1, x2 równania x2 + | x− | = 0 sa | ||
| √m | 2 |
| b2 | c | ||
− | = | ||
| a2 | a |
| 2m | −m2 | ||
− | = | ||
| 1 | 1 |
| 2 | m | ||
+ | = | ||
| m | 2 |
| 4+m2 | |
| 2m |
| 4+m2 | |
<4 | |
| 2m |
| 4+m2 | |
−4<0 | |
| 2m |
| 4+m2−8m | |
<0 | |
| 2m |
| m2−8m+4 | |
<0 ⇔ | |
| 2m |
| −8−4√3 | ||
m1= | = −4−2√3 | |
| 2 |
| −8+4√3 | ||
m2= | = −4+2√3 | |
| 2 |
| 4+m2 | |
≥4 | |
| 2m |
| 4 | ||
b2 = | ||
| m |