matematykaszkolna.pl
:) Asia: Wyznacz wszystkie liczby całkowite należące do dziedziny funkcji f(x) = 2sinx − 1 / log(−3x2 + 10x − 3)
20 lut 14:26
Basia: 2sinx−1≥0 −3x2+10x−3>0 −3x2+10x−3≠1 2sinx≥1 sinx≥12 x∊<π6+2kπ;6+2kπ> −3x2+10x−3>0 /*(−1) 3x2−10x+3<0 Δ=(−10)2−4*3*3=100−36=64 Δ=8 x1=10−86=26=13 x2=10+86=186=3 x∊(13;3) −3x2+10x−3≠1 −3x2+10x−4≠0 3x2−10x+4≠0 Δ=(−10)2−4*3*4=100−48 = 52 = 4*13 Δ = 213 x110−2136 = 5−133 x210+2136 = 5+133 w przedziale (13;3) mamy dwie liczby całkowite 1 i 2 π6 < 46 = 23<1 6>156 = 52>2 czyli 1,2∊<π6;6> i żadna z nich nie jest rozwiązaniem równania −3x2+10x−3=1 odp. 1 i 2
20 lut 14:55
Asia: Dziękuję bardzo emotka
20 lut 15:03
Fran: Skąd to: π6 < 46 = 23 < 1 6 > 156 = 52 > 2
21 lut 16:34