Zadania z Teorii jezyków formalnych (maszyna turinga itp)
NieZdam: Hej, absolutnie nie wiem jak zabrać się za te zadania. Jest któś mądry na forum który chcialbym
mi pomóc je zrozumieć, lub zrobić?
1. Let LHP be the language specifying the Halting problem. Decide and prove whether the
following statements are correct:
(a) There exists a recursive language L such that L ≤ LHP .
(b) There exists a recursive language L such that LHP ≤ L.
2.Using the reduction from the Halting problem, prove that the following language is not
recursive.
L = { <M> | M is a Turing machine where L(M) ⊆ {a, b}∗ ∧ |L(M)| = 2}
Further, prove that L is a recursively enumerable language, i.e., describe the main idea of a
Turing machine that accepts L.
Note: <M> denotes a string that encodes the Turing machine M.
30 kwi 14:44