| 3 | ||
Wykaz że w dowolnym trojkacie zachodzi równość sa2+sb2+sc2= | (a2+b2+c2) gdzie | |
| 4 |
| 1 | ||
(sb)2=c2+(1/2b)2−2*(1/2b)*c&cosα /*(−2)→−2(sb)2=−2c2− | b2+2bccosα | |
| 2 |
| 1 | ||
a2−2(sb)2=−c2+ | b2 | |
| 2 |
| 1 | ||
2(sb)2=a2+c2− | b2 /:2 | |
| 2 |
| 1 | 1 | 1 | ||||
(sb)2= | a2+ | c2− | b2 | |||
| 2 | 2 | 4 |
| 1 | 1 | 1 | 1 | 1 | 1 | |||||||
= | b2+ | c2− | a2+ | a2+ | c2− | b2 | ||||||
| 2 | 2 | 4 | 2 | 2 | 4 |
| 1 | 1 | 1 | ||||
+ | a2+ | b2− | c2 | |||
| 2 | 2 | 4 |
| 3 | 3 | 3 | ||||
= | a2+ | b2+ | c2 | |||
| 4 | 4 | 4 |
| 4 | 4 | |||
b2+c2 = | (sa2 + sb2 + sc2) + 3* | sa2 (tw. Steinera) | ||
| 9 | 9 |
| 8 | ||
2(a2+b2+c2)= | (sa2 + sb2 + sc2) | |
| 3 |
| 3 | ||
sa2 + sb2 + sc2 = | (a2+b2+c2) | |
| 4 |