| 1 | ||
I cos4 x − sin4 x I = I ( cos2 x + sin2 x)*( coa2 x − sin2 x) I = | ||
| √2 |
| √2 | ||
I cos2 x − sin2 x I = | ||
| 2 |
| √2 | ||
I cos 2 x I = | ||
| 2 |
| √2 | √2 | |||
cos 2 x = | lub cos 2 x = − | |||
| 2 | 2 |
| π | 3 | |||
2 x = | lub 2 x = | π | ||
| 4 | 4 |
| π | 3 | |||
x = | lub x = | π | ||
| 8 | 8 |
| π | 3 | |||
A = ( | , | π ) | ||
| 8 | 8 |
| 1 | ||
|cos2x|= | , zatem mamy: | |
| √2 |
| π | ||
x= | +kπ | |
| 8 |
| 7π | ||
x= | +kπ | |
| 8 |
| 3π | ||
x= | +kπ | |
| 8 |
| 5 | ||
x= | +kπ | |
| 8 |
| π | kπ | |||
zatem: x=x= | + | |||
| 8 | 4 |
| π | 3π | 5π | 7π | |||||
x∊{ | , | , | , | } | ||||
| 8 | 8 | 8 | 8 |
| π | 3π | π | 5π | 3π | 5π | |||||||
A={( | , | ),( | , | ),( | , | ), | ||||||
| 8 | 8 | 8 | 8 | 8 | 8 |
| π | 7π | 3π | 7π | 5π | 7π | |||||||
( | , | ),( | , | ),( | , | )} | ||||||
| 8 | 8 | 8 | 8 | 8 | 8 |
| |||||||
=6 i masz 6 punktów, zatem będzie 6 prostych równoległych do danej prostej: | |||||||
| π | 3π | π | 3π | |||||
m1 : 2*(x− | )+3*(y− | )=0 gdzie ( | , | )∊m1 | ||||
| 8 | 8 | 8 | 8 |
| 11π | ||
2x+3y− | =0 | |
| 8 |
| π | 5π | |||
m2: ( | , | )∊m2 | ||
| 8 | 8 |
| π | 5π | |||
2*(x− | )+3*(y− | )=0 | ||
| 8 | 8 |