bryła obrotowa
Kala: witajcie! Czy ktoś sprawdzi?
Mam obliczyć objętość i pole powierzchni obrotowej:
y2 = 4x
x=3
I wzór na objętość w postaci parametrycznej jest taki V=π∫(y(t))2 * x'(t)
Czyli wychodzi na to, że V=0 , bo pochodna z x = 0 . Czy jest to możliwe w tej sytuacji?
Dodam, że pole powierzchni bryły wychodzi, tu mamy wzór − Pp=2π∫√ (x'(t))2 +(y'(t))2
31 mar 21:50
Adamm:
objętość bryły utworzonej przez obrót wykresu y2 = 4x wokół prostej x = 3 ?
31 mar 21:55
Kala: Wydaje mi się, że tak, ale zapisał nam to na odchodne już, więc nie pamiętam
31 mar 21:58