1 | 1 | |||
1) Liczba x+ | jest wymierna. Wykaż, że liczba x5+ | też jest wymierna. | ||
x | x5 |
1 | ||
(x+ | )2∊Q | |
x |
1 | ||
x2+ | +2∊Q | |
x2 |
1 | ||
x2+ | ∊Q | |
x2 |
1 | ||
(x2+ | )2∊Q | |
x2 |
1 | ||
x4+ | +2∊Q | |
x4 |
1 | ||
x4+ | ∊Q | |
x4 |
1 | 1 | |||
(x4+ | )(x+ | )∊Q | ||
x4 | x |
1 | 1 | 1 | 1 | |||||
(x4+ | )(x+ | )=x5+x3+ | + | = | ||||
x4 | x | x3 | x5 |
1 | 1 | |||
(x5+ | )+(x3+ | ) | ||
x5 | x3 |
1 | 1 | |||
(x5+ | )+(x3+ | )∊Q | ||
x5 | x3 |
1 | ||
Do ukończenia dowodu wystarczy więc udowodnić, że liczba x3+ | też jest wymierna. | |
x3 |
1 | 1 | |||
(x2+ | )(x+ | ) | ||
x2 | x |
1 | 1 | 1 | 1 | 1 | 1 | |||||||
(x2+ | )(x+ | )=x3+x+ | + | =(x3+ | )+(x+ | ) | ||||||
x2 | x | x | x3 | x3 | x |
1 | ||
(x+ | )∊Q, czyli | |
x |
1 | ||
x3+ | ∊Q, | |
x3 |
1 | 1 | 1 | |||
+ | = | ||||
x | y | p |
x | x | |||
1+ | = | obustronnie razy y | ||
y | p |
xy | ||
y+x= | ||
p |
y | ||
x+y=x(1+ | ) | |
x |
y | y | |||
x* | =x(1+ | ) | ||
p | x |
y | y | ||
=(1+ | ) | ||
p | x |
1 |
| ||||||||
= | |||||||||
y | x |
1 | 1 |
| ||||||||||||
+ | = | |||||||||||||
x | y | x |
z | 1 | ||
= | |||
x | p |
1 | z | ||
= | |||
p | pz |
x | ||
x=p(1+ | ) | |
y |
px | ||
x=p+ | ||
y |
px | ||
a= | ||
y |
y | ||
a* | =p | |
x |
y | ||
a=1 i | =p | |
x |
y | ||
a=p i | =1 | |
x |
1 | 1 | 1 | |||
+ | = | ||||
x2−x | x | x−1 |
x | x2−x | 1 | |||
+ | = | ||||
x3−x2 | x3−x | x−1 |
x2 | 1 | ||
= | |||
x3−x2 | x−1 |
x3−x2 | |
=1 | |
x3−x2 |
1 | 1 | 2 | 1 | |||||
L= | + | = | = | =P | ||||
2p | 2p | 2p | p |