| π | ||
α = | = 60o | |
| 3 |
| 1 | ||
1) Skoro |CD| = |CB| to ΔBCD jest równoramienny, czyli ∡BDC = ∡DBC oraz |DB| = | |AD| | |
| 2 |
| h | 3√3 | |||||||||
tg 60o = | −> h = | c | ||||||||
| 2 |
| c | 28 | √7 | ||||
a2 = h2 + ( | )2 −> a2 = | c2 −> a2 = 7c2 −> c = | a | |||
| 2 | 4 | 7 |
| 3 | ||
b2 = h2 + ( | c)2 −> b = ... ![]() | |
| 2 |
| ||||||||
cos 60o = | −> b = ... ![]() | |||||||
| b |
1/ rys. zgodny z treścią
2/ w trójkącie "ekierkowym" (30o,60o,90o)
|AC|=6c , |AE|=3c to |AB|=4c i |EC|=3√3c
3/ z tw. Pitgorasa w ΔEBC
| a√7 | ||
a2= 28c2 ⇒ c= | ||
| 14 |