1 | ||
sin(10x) = | w przedziale (0; π2) | |
tg(5x) |
1 | cos(t) | |||
sin(2t)= | =ctg(t)= | |||
tg(t) | sin(t) |
cos(t) | ||
2sin(t)cos(t)= | /* sin(t) ≠ 0 | |
sin(t) |
√2 | √2 | |||
sin(t) = | ∨ sin(t) = − | |||
2 | 2 |
π | 3 | 5 | 7 | |||||
5x = | + 2kπ ∨ 5x = | π + 2kπ ∨ 5x = | π + 2kπ ∨ 5x = | π + 2kπ all /: 5 | ||||
4 | 4 | 4 | 4 |
π | 2 | 3 | 2 | |||||
x = | + | kπ ∨ x = | π + | kπ ∨ | ||||
20 | 5 | 20 | 5 |
5 | 2 | 7 | 2 | |||||
∨ x = | π + | kπ ∨ x = | π + | kπ | ||||
20 | 5 | 20 | 5 |
π | 9 | 3 | 5 | 7 | ||||||
xε{ | , | π, | π, | π, | π} | |||||
20 | 20 | 20 | 20 | 20 |
π | ||
Ale sin(t) ≠ 0 oraz cos(t) ≠ 0 zawsze spełnione w przedziale (0; | ), więc muszę coś tam | |
2 |
π | ||
sin(t) = sin(5x) = 0 np. gdy x = | ||
10 |
π | ||
oczywiście miał być cos(t) = cos(5x) = 0 −> chociażby x = | ||
10 |