1 | 1 | 1 | ||||
(a+b+c)( | + | + | )= | |||
a | b | b |
a | a | a | b | b | b | c | c | c | ||||||||||
= | + | + | + | + | + | + | + | + | = | |||||||||
a | b | c | a | b | c | a | b | c |
a | b | b | c | a | c | |||||||
=1+( | + | )+1+( | + | )+1+( | + | ) ≥ 3 + 3•2 = 9. | ||||||
b | a | c | b | c | a |
1 | ||
Korzystaliśmy trzykrotnie z twierdzenia, że dla x>0 jest x+ | ≥ 2. | |
x |
1 | 1 | 1 | ||||
(a+b+c)( | + | + | ) ≥ 9, | |||
a | b | c |
1 | 1 | 1 | ||||
2( | + | + | ) ≥ 9 | |||
a | b | c |
1 | 1 | 1 | 9 | |||||
+ | + | ≥ | , | |||||
a | b | c | 2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |