x | sin2x | 1 | ||||
= limx→0 | − limx→0 | = [ | *1 − 1*1*1] = ∞ | |||
x2tgx | x2cosx | x2 |
1 | ||
Jerzy, wolfram wypluwa wynik | ![]() | |
6 |
x − sinx | 1 − cosx | ||
=H | =H | ||
x2 sinx | 2xsinx + x2cosx |
sinx | ||
= | =H | |
2sinx + 2xcosx + 2xcosx − x2sinx |
cosx | 1 | |||
= | → | |||
6cosx − 2xsinx − 2xsinx − x2cosx | 6 |
sinx | ||
tg(x) = | ||
cosx |
x − sinx | |
x2tgx |
x − sinx | |
x2 sinx |
x−sin(x) | ||
lim x−>0 | ||
x2tg(x) |
(x−sin(x))x | ||
lim x−>0 | ||
x3tg(x) |
x−sin(x) | x | ||
lim x−>0 | |||
x3 | tg(x) |
x−sin(x) | x | |||
lim x−>0 | lim x−>0 | |||
x3 | tg(x) |
x−sin(x) | ||
lim x−>0 | ||
x3 |
3t−sin(3t) | ||
lim t−>0 | ||
27t3 |
x−sin(x) | ||
Niech lim x−>0 | = G | |
x3 |
3t−(3sin(t)−4sin3(t)) | ||
lim t−>0 | ||
27t3 |
3t−3sin(t) | 4 | sin3(t) | ||||
lim t−>0 | + | lim t−>0 | ||||
27t3 | 27 | t3 |
1 | t−sin(t) | 4 | sin3(t) | ||||
lim t−>0 | + | lim t−>0 | |||||
9 | t3 | 27 | t3 |
1 | 4 | |||
G = | G+ | |||
9 | 27 |
8 | 4 | ||
G= | |||
9 | 27 |
4 | 9 | ||
G= | |||
27 | 8 |
1 | 1 | ||
G= | |||
2 | 3 |
1 | ||
G= | ||
6 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |