Twierdzenie Cevy.
https://pl.wikipedia.org/wiki/Twierdzenie_Cevy
P− pole ΔABC
1) z tw. Cevy
| AF | 3y | 2x | |||
* | * | =1 | |||
| FB | y | x |
| AF | 1 | ||
= | |||
| FB | 6 |
| 2 | ||
2) PΔCDB= | P | |
| 3 |
| 1 | ||
PΔAEC= | P | |
| 4 |
| 2 | ||
⇔14+4v= | P | |
| 3 |
| 1 | ||
21+v= | P | |
| 4 |
| 63 | ||
v= | , P=210 | |
| 2 |
| 1 | ||
P{ΔDAP= | P | |
| 3 |
| 1 | |
*210=7+7u | |
| 3 |
| CM | |
=U{P{ΔCMB}}{PΔMFB − Δ maja tę samą wysokość opuszczoną CF z p. B | |
| MF |
| CM | 126 | 7 | |||
= | = | ||||
| MF | 54 | 3 |
bez Cevy
| 1 | ||
P(AMD)= | *14= 7 | |
| 2 |
| u | 7+14 | |||
w ΔAFC i FBC : | = | ⇒ v= 6u to u+6u=63 ⇒ u=9 | ||
| v | 4w |
| |CM| | 7+14 | 7 | ||||
zatem w ΔAFC : | = | = | ||||
| |MF| | 9 | 3 |