Mariusz:
sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
sin(A−B)=sin(A)cos(B)−cos(A)sin(B)
sin(A+B)−sin(A−B)=(sin(A)cos(B)+cos(A)sin(B))−(sin(A)cos(B)−cos(A)sin(B))
sin(A+B)−sin(A−B)=2cos(A)sin(B)
A+B=
√x+1
A−B=
√x
2A=
√x+1+
√x
2B=
√x+1−
√x
| √x+1+√x | | √x+1−√x | |
sin(√x+1)−sin(√x)=2cos( |
| )sin( |
| ) |
| 2 | | 2 | |
| √x+1+√x | | x+1−x | |
2cos( |
| )sin( |
| ) |
| 2 | | 2(√x+1+√x) | |
| √x+1+√x | | 1 | |
2cos( |
| )sin( |
| ) |
| 2 | | 2(√x+1+√x) | |
cosinus jest ograniczony a sinus dąży do zera