| 12 | ||
DEF stanowi | pola trójkąta ABC. | |
| 49 |
| 7b*9c*sinα | 63 | |||
P(ABC)=P= | = | |||
| 2 | 2 |
| 3 | ||
ΔEFC podobny do ΔABC (z cechy (kkk) w skali k= | ||
| 7 |
| 9 | 81 | |||
to P(EFC)=P3= | P= | bcsinα | ||
| 49 | 14 |
| 1 | ||
P(ADE)=P1= | *4b*2c*sinα = 4bcsinα | |
| 2 |
| 7 | ||
P(DBF)= P2= | *P1= 14bcsinα | |
| 2 |
| 54 | ||
S=P1+P2+P3= | bcsinα | |
| 7 |
| S | 54 | 2 | 12 | ||||
= | * | = | |||||
| P | 7 | 63 | 49 |
| 12 | ||
S= | P | |
| 49 |
Dołączam II sposób
P− pole ΔABC
| 3 | ||
1)ΔEFC∼ΔABC w skali k= | ⇔ | |
| 7 |
| 9 | ||
PEFC= | P=s | |
| 49 |
| h1 | 3 | 3 | 4 | ||||
= | ⇔h1= | H i h2= | H | ||||
| H | 7 | 7 | 7 |
| s | h1 | s | 3 | 4 | |||||
= | ⇔ | = | ⇔w= | s | |||||
| w | h2 | w | 4 | 3 |
| 4 | 9 | |||
w= | * | P | ||
| 3 | 49 |
| 12 | ||
PΔEFD= | P | |
| 49 |