| 1 | ||
f(x) = ln | ||
| x+√x2−1 |
| 1 | ||
f(x) = ln | = ln(t) | |
| x + √x2 − 1 |
| 1 | 1 | x − √x2 − 1 | ||||
gdzie t = | = | * | ||||
| x + √x2 − 1 | x + √x2 − 1 | x − √x2 − 1 |
| x − √x2 − 1 | ||
t = | = x − √x2 − 1 | |
| x2 − x2 + 1 |
| 1 | ||
f'(x) = | *t' | |
| t |
| 1 | |
= x + √x2 − 1 | |
| t |
| 2x | ||
t' = 1 − U | ||
| 2√x2 −1 |
| 2x | x | |||
t' = 1 − | = 1 − | |||
| 2√x2 − 1 | √x2 −1 |
| 1 | x | |||
f'(x) = | *(1 − | ) | ||
| x − √x2 −1 | √x2 −1 |
| 1 | √x2 − 1 − x | |||
f'(x) = | * | |||
| x − √x2 − 1 | √x2 − 1 |
| −1 | ||
f'(x) = | ||
| √x2 − 1 |