matematykaszkolna.pl
Równanie prostej stycznej do wykresu funkcji 123: Nie wiem czy dobrze zrobiłem Równanie prostej stycznej do wykresu funkcji f(x) = x ln( −x) w punkcie ( −1 , F(−1)) F(−1) = −1ln1 = ln 11 = ln1 = 0 P=(−1.0)
 1 1 
F'x = (x)' * (ln(−x))' = 1 *

= −

 −x x 
F'(x0) = F'(−1) = 1 y−0=1(x+1) y=x+1
12 lut 19:52
Janek191:
 −1 
f '(x) = ln( − x) + x* ( − 1*

) = ln ( −x) + 1
 x 
12 lut 20:37
123: nie rozumiem xD
12 lut 20:54
Janek191: Pochodna była źle obliczona: ( f * g) ' = f ' * g + f * g'
12 lut 20:57
123: a dzięki
12 lut 21:00
Janek191: rysunek
12 lut 21:03