π | 3 | π | ||||
sin(x+ | )= | i 0<x< | ||||
4 | 4 | 4 |
3π | π | |||
sin2(x− | )−cos2(x− | ) | ||
2 | 2 |
3√7 | ||
odp: | ||
8 |
3√2 | 1 | |||
sin(x + π/4) = 3/4 ⇒ sinx + cosx = | ⇒ sin2x = | |||
4 | 8 |
√7 | ||
cosx − sinx = |cosx − sinx| = √1 − sin2x = | ||
2√2 |
3√7 | ||
W = (cosx − sinx)(cosx + sinx) = | ||
8 |
π | √2 | |||
sin(x+ | )= | (sinx+cosx) | ||
4 | 2 |
3√2 | 1 | |||
to sinx+cosx= | /2 ⇒ ............... sin(2x)= | i 2x∊ I ćw. | ||
4 | 8 |
3√7 | ||
więc cos(2x)= +√1−sin2(2x) = | ||
8 |
3π | π | |||
sin2(x− | )= (−cosx)2 i cos2(x− | ) = sin2x | ||
2 | 2 |
3√7 | ||
W= cos2x−sin2x = cos(2x) = | ||
8 |