| π | 3 | π | ||||
sin(x+ | )= | i 0<x< | ||||
| 4 | 4 | 4 |
| 3π | π | |||
sin2(x− | )−cos2(x− | ) | ||
| 2 | 2 |
| 3√7 | ||
odp: | ||
| 8 |
| 3√2 | 1 | |||
sin(x + π/4) = 3/4 ⇒ sinx + cosx = | ⇒ sin2x = | |||
| 4 | 8 |
| √7 | ||
cosx − sinx = |cosx − sinx| = √1 − sin2x = | ||
| 2√2 |
| 3√7 | ||
W = (cosx − sinx)(cosx + sinx) = | ||
| 8 |
| π | √2 | |||
sin(x+ | )= | (sinx+cosx) | ||
| 4 | 2 |
| 3√2 | 1 | |||
to sinx+cosx= | /2 ⇒ ............... sin(2x)= | i 2x∊ I ćw. | ||
| 4 | 8 |
| 3√7 | ||
więc cos(2x)= +√1−sin2(2x) = | ||
| 8 |
| 3π | π | |||
sin2(x− | )= (−cosx)2 i cos2(x− | ) = sin2x | ||
| 2 | 2 |
| 3√7 | ||
W= cos2x−sin2x = cos(2x) = | ||
| 8 |
już się
poprawiam i formalnie:
Dziękuję Eta!
Dziękuję ICSP!