zad
pisss: ln(sinx)−lnx w mianowniku
w liczniku x
2
jaka bedzie pochodna przy x →0+
5 lut 13:32
Jerzy:
Pochodną liczy się w punkcie.
5 lut 13:37
pisss: jejku, przepraszam, granica
5 lut 13:45
Mariusz:
| f(x+Δx) | | f(x) | |
| − |
| | g(x+Δx) | | g(x) | |
| |
limΔx→0 |
| = |
| Δx | |
| f(x+Δx)g(x)−f(x)g(x+Δx) | |
| | g(x+Δx)g(x) | |
| |
limΔx→0 |
| = |
| Δx | |
| f(x+Δx)g(x)−f(x)g(x)+f(x)g(x)−f(x)g(x+Δx) | |
| | g(x+Δx)g(x) | |
| |
limΔx→0 |
| = |
| Δx | |
| (f(x+Δx)−f(x))g(x)−f(x)(g(x+Δx)−g(x)) | |
limΔx→0 |
| = |
| g(x+Δx)g(x)Δx | |
| f(x+Δx)−f(x) | | g(x+Δx)−g(x) | |
| g(x)−f(x) |
| | Δx | | Δx | |
| |
limΔx→0 |
| |
| g(x+Δx)g(x) | |
| f(x+Δx)−f(x) | | g(x+Δx)−g(x) | | limΔx→0 |
| g(x)−f(x) |
| | | Δx | | Δx | |
| |
| |
limΔx→0g(x+Δx)g(x) | |
| f(x+Δx)−f(x) | | limΔx→0 |
| g(x) | | Δx | |
| |
| − |
limΔx→0g(x+Δx)g(x) | |
| g(x+Δx)−g(x) | | limΔx→0f(x) |
| | | Δx | |
| |
| |
limΔx→0g(x+Δx)g(x) | |
| f'(x)g(x)−f(x)g'(x) | |
= |
| |
| g2(x) | |
5 lut 13:51
Jerzy:
@Mariusz ... tutaj trzeba policzyć granicę, a nie pochodną.
5 lut 13:52
Mariusz:
| sin(x)−x | |
ln(U{1+ |
| })x/(sin(x)−x)(sin(x)−x)/x3 |
| x | |
5 lut 14:13
pisss: no i co dalej
6 lut 09:17
Mariusz:
W mianowniku mamy x
3
Gdybyśmy w liczniku mieli sin
3(x) to moglibyśmy rozbić tę granicę na sumę granic
Podstawmy więc x=3t
x=3t
t→0 gdy x→0
sin(3t)=sin(t+2t)=sin(t)cos(2t)+cos(t)sin(2t)
sin(3t)=sin(t)(cos
2(t)−sin
2(t))+2sin(t)cos
2(t)
sin(3t)=sin(t)(1−2sin
2(t))+2sin(t)(1−sin
2(t))
sin(3t)=sin(t)−2sin
3(t)+2sin(t)−2sin
3(t)
sin(3t)=3sin(t)−4sin
3(t)
| sin(x)−x | | −4sin3(t)+3sin(t)−3t | |
limx→0 |
| =limt→0 |
| |
| x3 | | 27t3 | |
| sin(x)−x | | 4 | | sin3(t) | | 1 | | sin(t)−t | |
limx→0 |
| =− |
| limt→0 |
| + |
| limt→0 |
| |
| x3 | | 27 | | t3 | | 9 | | t3 | |
| sin(x)−x | |
Niech limx→0 |
| =L |
| x3 | |
7 lut 18:18