| √1−√cosx | ||
limx→0 | ||
| sinx |
| x | √1−√cosx | |
| sinx | x |
| x | |
→1 | |
| sinx |
| √1−√cosx | √1−√cosx | √1+√cosx | |||
= | * | ||||
| x | x | √1+√cosx |
| √1−cosx | ||
= | ||
| x(√1+√cosx) |
| √1−cosx | √1−cosx | √1+cosx | √1−cos2x | |||
= | = | |||||
| x | x | √1+cosx | x(√1+cosx) |
| |sinx| | ||
= | ||
| x(√1+cosx) |
| x | 1 | |sinx| | |
| sinx | (√1+√cosx) | x(√1+cosx) |
| x | 1 | |sinx| | 1 | 1 | ||||
= | → | gdy x→0+ lub →− | gdy x→0− | |||||
| sinx | (1+√cosx) | x | 2 | 2 |
| 1 | |sinx| | |
| 1+√cosx | sinx |