√1−√cosx | ||
limx→0 | ||
sinx |
x | √1−√cosx | |
sinx | x |
x | |
→1 | |
sinx |
√1−√cosx | √1−√cosx | √1+√cosx | |||
= | * | ||||
x | x | √1+√cosx |
√1−cosx | ||
= | ||
x(√1+√cosx) |
√1−cosx | √1−cosx | √1+cosx | √1−cos2x | |||
= | = | |||||
x | x | √1+cosx | x(√1+cosx) |
|sinx| | ||
= | ||
x(√1+cosx) |
x | 1 | |sinx| | |
sinx | (√1+√cosx) | x(√1+cosx) |
x | 1 | |sinx| | 1 | 1 | ||||
= | → | gdy x→0+ lub →− | gdy x→0− | |||||
sinx | (1+√cosx) | x | 2 | 2 |
1 | |sinx| | |
1+√cosx | sinx |