| cosx | ex | xsin(x2) | ||||
1. Znalezc granicę: limx→0 ( | − | ) , limx→0 | ||||
| x | sinx | x−six |
| x−2 | ||
2. Zbadac funkcje: f(x)= | ||
| x2+4x+4 |
| cosx dx | 1 | |||
3. Obliczyc calki: ∫ | , ∫10 | dx | ||
| sin3x+six | x2−4 |
| y | ||
4. Rozwiązać równanie: y'=y− | −x+2; y(1)=1 | |
| x |
| 1 | ||
y'+( | −1)y=−x+2 | |
| x |
| 1 | ||
y'+( | −1)y=0 | |
| x |
| 1 | ||
y'=(1− | )y | |
| x |
| dy | 1 | ||
=(1− | ) | ||
| y | x |
| ex | ||
y=C | ||
| x |
| ex | ||
y=C(x) | ||
| x |
| ex | exx−ex | x−1 | ex | |||||
C'(x) | + | C(x)−( | )C(x) | =−x+2 | ||||
| x | x2 | x | x |
| ex | ||
C'(x) | =−x+2 | |
| x |
| ex | ||
y=(x2e−x+C1) | ||
| x |
| ex | ||
y=x+C | ||
| x |
| 1 | 1+t2−t2 | |||
∫ | dt=∫ | dt | ||
| t3+t | t3+t |
| 1 | 1 | t | ||||
∫ | dt=∫ | dt−∫ | ||||
| t3+t | t | t2+1 |
| 1 | ||
=ln|sin(x)|− | ln|1+sin2(x)|+C | |
| 2 |
| 1 | 1 | (x+2)−(x−2) | ||||
∫01 | = | ∫01 | dx | |||
| x2−4 | 4 | x2−4 |
| 1 | x−2 | |||
= | ln(| | |)|01 | ||
| 4 | x+2 |
| 1 | 1 | −2 | ||||
= | (ln| | |−ln| | |) | |||
| 4 | 3 | 2 |
| 1 | ||
=− | ln(3) | |
| 4 |
| cos(x)sin(x)−xex | ||
limx→0 | ||
| xsin(x) |