matematykaszkolna.pl
element odwrotny grupy iteRacj@: Sprawdzam czy zbiór liczb zespolonych o module 1 z działaniem mnożenia jest grupą, |z|=x2+y2=1. Szukam elementu neutralnego i odwrotnego. Elementem neutralnym jest liczba 1: z*e=e*z=z ⇒ e=1, |1|=1 należy do podanego zbioru Element odwrotny − tu wychodzi mi liczba sprzężona do z, ale nie wiem czy to własciwa odpowiedź i czy mogę tak zapisać:
 1 z* z* 
z*z−1=z−1*z=1 ⇒ z−1=

=

=

=z*, |z*|=1 należy do danego
 z zz* x2+y2 
zbioru ?
29 sty 22:24
Adamm: Tak |a*b| = |a|*|b| = 1, a, b∊S1
29 sty 22:29
Adamm: Nie trzeba było charakteryzować z−1, wystarczyła informacja że |z−1| = 1
29 sty 22:31
iteRacj@: Czyli nie trzeba podawać, że to sprzężenie?
29 sty 22:33
Adamm: Nie trzeba. Wystarczy informacja że z−1∊S1
29 sty 22:35
iteRacj@: Dziekuję!
29 sty 22:36