4t5 | 4t3 | 4(√1+√x)5 | 4(√1+√x)3 | |||||
∫t*2(t2−1)*2tdt=∫(4t4−4t2)dt= | − | = | − | |||||
5 | 3 | 5 | 3 |
1 | ||
n= | ||
2 |
1 | ||
p= | ||
2 |
u2−1 | ||
t= | ||
2u |
u2+1 | ||
t−x= | ||
2u |
(2u)(2u)−2(u2−1) | ||
dt= | du | |
4u2 |
u2+1 | ||
dt= | du | |
2u2 |
(u2−1)3 | u2+1 | u2+1 | ||
∫4 | du | |||
8u3 | 2u | 2u2 |
1 | (u2−1)3(u2+1)2 | ||
∫ | |||
8 | u6 |
1 | (u4−1)2(u2−1) | ||
∫ | du | ||
8 | u6 |
1 | (u8−2u4+1)(u2−1) | ||
∫ | du | ||
8 | u6 |
1 | u10−u8−2u6+2u4+u2−1 | ||
∫ | du | ||
8 | u6 |