1 | ||
S(x)= | ||
1+x−x2−x3 |
1 | ||
S(x)= | ||
1(1+x)−x2(1+x) |
1 | ||
S(x)= | ||
(1−x2)(1+x) |
1 | ||
S(x)= | ||
(1−x)(1+x)2 |
1 | A | B | C | ||||
= | + | + | |||||
(1−x)(1+x)2 | 1−x | 1+x | (1+x)2 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||
= | + | + | ||||||||
(1−x)(1+x)2 | 4 | 1−x | 4 | 1+x | 2 | (1+x)2 |
1 | ||
∑n=0∞(−1)nxn= | ||
(1+x) |
d | d | 1 | |||
(∑n=0∞(−1)nxn)= | ( | ) | |||
dx | dx | (1+x) |
1 | ||
∑n=0∞n(−1)nxn−1=− | ||
(1+x)2 |
1 | ||
∑n=1∞n(−1)nxn−1=− | ||
(1+x)2 |
1 | ||
∑n=0∞(n+1)(−1)n+1xn=− | ||
(1+x)2 |
1 | ||
∑n=0∞(n+1)(−1)nxn= | ||
(1+x)2 |
1 | 1 | 1 | ||||
S(x)=∑n=0∞ | xn+∑n=0∞ | (−1)nxn+∑n=0∞ | (n+1)(−1)nxn | |||
4 | 4 | 2 |
1 | 1 | 1 | ||||
sn= | + | (−1)n+ | (n+1)(−1)n | |||
4 | 4 | 2 |
1 | 1 | |||
sn= | + | (2n+3)(−1)n | ||
4 | 4 |
n | ||
Osobno składniki dodatnie (jest ich | ): | |
2 |
n | n | ||
1+3+5+...+n−1 = | |||
2 | 2 |
n | ||
(suma | składników ciągu arytmetycznego). | |
2 |
n | ||
Osobno składniki ujemne (jest ich | : | |
2 |
n+2 | n | ||
−2−4...−n = − | . | ||
2 | 2 |
n | n | n+2 | n | n | n | |||||
− | = | (n−(n+2))=− | ||||||||
2 | 2 | 2 | 2 | 4 | 2 |
n | ||
(1−2)+(3−4)+....+(n−1−n) = suma | składników, z których każdy jest równy (−1). | |
2 |