x | ||
∫ | dx | |
cos2x |
1 | ||
u = x v' = | ||
cos2x |
sinx | ||
= xtgx − ∫tgxdx = xtgx − ∫ | dx = xtgx + ln|cosx| + C | |
cosx |
x | xcos2(x) | xsin2(x) | ||||
∫ | dx=∫ | dx+∫ | dx | |||
cos2(x) | cos2(x) | cos2(x) |
x | sin(x) | |||
∫ | dx=∫xdx+∫(xsin(x)) | dx | ||
cos2(x) | cos(x) |
x | xsin(x) | sin(x)+xcos(x) | ||||
∫ | dx=∫xdx+ | −∫ | dx | |||
cos2(x) | cos(x) | cos(x) |
x | xsin(x) | −sin(x) | ||||
∫ | dx=∫xdx+ | −∫xdx+∫ | dx | |||
cos2(x) | cos(x) | cos(x) |
x | xsin(x) | |||
∫ | dx= | +ln|cos(x)|+C | ||
cos2(x) | cos(x) |