| x | ||
∫ | dx | |
| cos2x |
| 1 | ||
u = x v' = | ||
| cos2x |
| sinx | ||
= xtgx − ∫tgxdx = xtgx − ∫ | dx = xtgx + ln|cosx| + C | |
| cosx |
| x | xcos2(x) | xsin2(x) | ||||
∫ | dx=∫ | dx+∫ | dx | |||
| cos2(x) | cos2(x) | cos2(x) |
| x | sin(x) | |||
∫ | dx=∫xdx+∫(xsin(x)) | dx | ||
| cos2(x) | cos(x) |
| x | xsin(x) | sin(x)+xcos(x) | ||||
∫ | dx=∫xdx+ | −∫ | dx | |||
| cos2(x) | cos(x) | cos(x) |
| x | xsin(x) | −sin(x) | ||||
∫ | dx=∫xdx+ | −∫xdx+∫ | dx | |||
| cos2(x) | cos(x) | cos(x) |
| x | xsin(x) | |||
∫ | dx= | +ln|cos(x)|+C | ||
| cos2(x) | cos(x) |