dx | ||
∫ | ||
1+cosx |
x | ||
1 + cosx = 2cos2( | ) | |
2 |
1 | ||
∫ | dx | |
cos2x |
1 | cos2(x)+sin2(x) | |||
∫ | dx=∫ | dx | ||
cos2(x) | cos2(x) |
1 | sin(x) | |||
∫ | dx=∫dx+∫sin(x) | dx | ||
cos2(x) | cos2(x) |
1 | sin(x) | cos(x) | ||||
∫ | dx=∫dx+ | −∫ | dx | |||
cos2(x) | cos(x) | cos(x) |
1 | sin(x) | |||
∫ | dx=∫dx+ | −∫dx | ||
cos2(x) | cos(x) |
1 | sin(x) | |||
∫ | dx= | +∫0dx | ||
cos2(x) | cos(x) |
1 | sin(x) | |||
∫ | dx= | +C | ||
cos2(x) | cos(x) |