| dx | ||
∫ | ||
| 1+cosx |
| x | ||
1 + cosx = 2cos2( | ) | |
| 2 |
| 1 | ||
∫ | dx | |
| cos2x |
| 1 | cos2(x)+sin2(x) | |||
∫ | dx=∫ | dx | ||
| cos2(x) | cos2(x) |
| 1 | sin(x) | |||
∫ | dx=∫dx+∫sin(x) | dx | ||
| cos2(x) | cos2(x) |
| 1 | sin(x) | cos(x) | ||||
∫ | dx=∫dx+ | −∫ | dx | |||
| cos2(x) | cos(x) | cos(x) |
| 1 | sin(x) | |||
∫ | dx=∫dx+ | −∫dx | ||
| cos2(x) | cos(x) |
| 1 | sin(x) | |||
∫ | dx= | +∫0dx | ||
| cos2(x) | cos(x) |
| 1 | sin(x) | |||
∫ | dx= | +C | ||
| cos2(x) | cos(x) |