1 + cos2t | ||
Podstaw: x = 2sint i masz całkę: ∫4cos2tdt , teraz wykorzystaj wzór: cos2t = | ||
2 |
−x2 | ||
∫√4−x2dx=x√4−x2−∫ | dx | |
√4−x2 |
4−x2−4 | ||
∫√4−x2dx=x√4−x2− | dx | |
√4−x2 |
dx | ||
∫√4−x2dx=x√4−x2−∫√4−x2dx+4∫ | dx | |
√4−x2 |
| ||||||||
2∫√4−x2dx=x√4−x2+4∫ | dx | |||||||
√1−(x/2)2 |
x | ||
2∫√4−x2dx=x√4−x2+4arcsin( | )+C1 | |
2 |
1 | x | |||
∫√4−x2dx= | x√4−x2+2arcsin( | )+C | ||
2 | 2 |