x2 | ||
2∫x arctgx dx = ∫ [x2]'arctgx dx = x2arctgx dx − ∫ | dx = | |
1 + x2 |
1 | ||
= x2 arctgx − [ ∫dx − ∫ | dx] = x2 arctgx − x + arctgx + 2C = | |
x2 + 1 |
1 | ||
∫ x arctgx dx = | [arctgx[x2 + 1] − x] + C | |
2 |
1 | 1 | 1 | x2+1 | |||||
∫xarctgxdx=∫[ | (x2+1)]'arctg(x)dx= | (x2+1)arctg(x)− | ∫ | dx | ||||
2 | 2 | 2 | x2+1 |
1 | 1 | |||
∫xarctgxdx= | (x2+1)arctg(x)− | x+C | ||
2 | 2 |