n(n−1) | |
2 |
n(n+1) | ||
∑k = | ||
2 |
0 + (n − 1) | ||
S = | *n | |
2 |
1 | ||
∑n=0∞xn= | ||
1−x |
d | d | 1 | |||
(∑n=0∞xn)= | ( | ) | |||
dx | dx | 1−x |
−1 | ||
∑n=0∞nxn−1= | (−1) | |
(1−x)2 |
1 | ||
∑n=0∞nxn−1= | ||
(1−x)2 |
x | ||
∑n=0∞nxn= | ||
(1−x)2 |
x | 1 | |||
∑n=0∞nxn−∑n=0∞xn= | − | |||
(1−x)2 | 1−x |
x−(1−x) | ||
∑n=0∞nxn−∑n=0∞xn= | ||
(1−x)2 |
2x−1 | ||
∑n=0∞nxn−∑n=0∞xn= | ||
(1−x)2 |
2x−1 | ||
∑n=0∞anxn=x((∑n=0∞anxn))+1+ | ||
(1−x)2 |
(1−2x+x2)+2x−1 | ||
A(x)(1−x)= | ||
(1−x)2 |
x2 | ||
A(x)(1−x)= | ||
(1−x)2 |
x2 | ||
A(x)= | ||
(1−x)3 |
1 | ||
∑n=0∞xn= | ||
1−x |
d | d | 1 | |||
(∑n=0∞xn)= | ( | ) | |||
dx | dx | 1−x |
−1 | ||
∑n=0∞nxn−1= | (−1) | |
(1−x)2 |
1 | ||
∑n=0∞nxn−1= | ||
(1−x)2 |
d | d | 1 | |||
(∑n=0∞nxn−1)= | ( | ) | |||
dx | dx | (1−x)2 |
−2 | ||
(∑n=0∞n(n−1)xn−2)= | (−1) | |
(1−x)3 |
2x2 | ||
∑n=0∞n(n−1)xn= | ||
(1−x)3 |
1 | ||
A(x)=∑n=0∞ | n(n−1)xn | |
2 |
1 | ||
an= | n(n−1) | |
2 |