⎧ | 4(n + (n−2) + .... + 2) + a0 , dla n = 2k | ||
= | ⎩ | 4(n + (n−2) + .... + 3) + a1, dla n=2k−1 |
1 | ||
∑n=0∞xn= | ||
1−x |
d | d | 1 | |||
(∑n=0∞xn)= | ( | ) | |||
dx | dx | 1−x |
−1 | ||
∑n=0∞nxn−1= | (−1) | |
(1−x)2 |
1 | ||
∑n=0∞nxn−1= | ||
(1−x)2 |
x | ||
∑n=0∞nxn= | ||
(1−x)2 |
4x | ||
A(x)−1=x2A(x)+ | ||
(1−x)2 |
4x | ||
A(x)(1−x2)=1+ | ||
(1−x)2 |
1+2x+x2 | ||
A(x)(1−x2)= | ||
(1−x)2 |
1+2x+x2 | ||
A(x)= | ||
(1−x2)(1−x)2 |
1+x | ||
A(x)= | ||
(1−x)3 |
−1+x+2 | ||
A(x)= | ||
(1−x)3 |
−1 | 2 | |||
A(x)= | + | |||
(1−x)2 | (1−x)3 |
1 | ||
∑n=0∞xn= | ||
1−x |
d | d | 1 | |||
(∑n=0∞xn)= | ( | ) | |||
dx | dx | 1−x |
−1 | ||
∑n=0∞nxn−1= | (−1) | |
(1−x)2 |
1 | ||
∑n=0∞nxn−1= | ||
(1−x)2 |
1 | ||
∑n=1∞nxn−1= | ||
(1−x)2 |
1 | ||
∑n=0∞(n+1)xn= | ||
(1−x)2 |
d | d | 1 | |||
(∑n=0∞(n+1)xn)= | ( | ) | |||
dx | dx | (1−x)2 |
−2 | ||
∑n=0∞n(n+1)xn−1= | (−1) | |
(1−x)3 |
2 | ||
∑n=0∞n(n+1)xn−1= | ||
(1−x)3 |
2 | ||
∑n=1∞n(n+1)xn−1= | ||
(1−x)3 |
2 | ||
∑n=0∞(n+1)(n+2)xn= | ||
(1−x)3 |
−1 | 2 | |||
A(x)= | + | |||
(1−x)2 | (1−x)3 |