| x+1 | ||
a) ∫ | dx
| |
| (x2+4x+5)2 |
| −x3+2x | ||
b) ∫ | dx | |
| (x2+4)(x2+1)2 |
| x+1 | ||
I=∫ | dx = | |
| [(x+2)2+1]2 |
| x+2−1 | ||
=∫ | dx = | |
| [(x+2)2+1]2 |
| x+2 | 1 | |||
∫ | dx−∫ | dx | ||
| [(x+2)2+1]2 | [(x+2)2+1]2 |
| x+2 | ||
I1=∫ | dx | |
| [(x+2)2+1]2 |
| dt | ||
(x+2)dx = | ||
| 2 |
| dt | 1 | dt | ||||
I1=∫ | dt = | ∫ | ||||
| 2(t+1)2 | 2 | (t+1)2 |
| 1 | du | 1 | 1 | u−1 | 1 | ||||||
I1= | ∫ | = | ∫u−2du = | = − | = | ||||||
| 2 | u2 | 2 | 2 | −1 | 2u |
| 1 | 1 | 1 | ||||
− | = − | = − | ||||
| 2(t+1) | 2[(x+2)2+1] | 2(x2+4x+5) |
| 1 | ||
I2=∫ | dx | |
| [(x+2)2+1]2 |
| 1 | ||
I2 = ∫ | dt = arctgt = arctg(x+2) | |
| t2+1 |
| 1 | ||
I= − | −arctg(x+2) + C | |
| 2(x2+4x+5) |
| 1 | 1 | ||
= | |||
| (t+1)2 | t2+2t+1 |
| −x3+2x | |
= | |
| (x2+4)(x2+1)2 |
| Ax+B | Cx+D | Ex+F | |||
+ | + | ||||
| x2+4 | (x2+1)2 | x2+1 |
| x3+2x | |
= | |
| (x2+4)(x2+1)2 |
| 23x | x | −23x | |||
+ | + | ||||
| x2+4 | (x2+1)2 | x2+1 |
| x3+2x | ||
∫ | dx = | |
| (x2+4)(x2+1)2 |
| 23x | ||
∫ | dx + | |
| x2+4 |
| x | ||
∫ | dx + | |
| (x2+1)2 |
| −23x | ||
∫ | = | |
| x2+1 |
| 2x | ||
13∫ | dx + | |
| x2+4 |
| 2x | ||
13∫ | dx | |
| x2+1 |
| 2x | ||
I1= ∫ | dx | |
| x2+4 |
| dt | ||
I1=∫ | =ln|t|+C1 = ln|x2+4}+C1 = ln(x2+4)+C1 | |
| t |
| dt | 1 | 1 | ||||
I2=∫ | = − | +C2 = − | +C2 | |||
| t2 | t | x2+1 |
| 2x | ||
I3 = ∫ | dx | |
| x2+1 |
| dt | ||
I3 = ∫ | = ln|t|+C3 = ln|x2+1|+C3 = ln(x2+1)+C3 | |
| t |
| 1 | ||
I = 13*ln(x2+4)+12*( − | )−13* ln(x2+1) = | |
| x2+1 |
| 1 | x2+4 | |||
− | +13*ln | + C | ||
| 2(x2+1) | x2+1 |
| 1 | ||
I2 = ∫ | ||
| (1+t2)2 |
| t2+1−t2 | ||
= ∫ | dt = | |
| (1+t2)2 |
| 1+t2 | t2 | |||
∫ | dt − ∫ | dt = | ||
| (1+t2)2 | (t2+1)2 |
| 1 | t | |||
∫ | dt − ∫t* | dt = | ||
| t2+1 | (t2+1)2 |
| t | 1 | 1 | ||||
g'(t) = | g(t) = − | * | ||||
| (t2+1)2 | 2 | t2+1 |
| t | 1 | 1 | ||||
I3 = − | + | ∫ | dt = | |||
| t2+1 | 2 | t2+1 |
| t | 1 | |||
− | + | arctg|t| | ||
| t2+1 | 2 |
| 1 | t | |||
I2= | arctg|t|+ | |||
| 2 | t2+1 |
Zaraz to przeanalizuję, ale naprawdę bardzo Ci dziękuję
| dx | dx | |||
J = ∫ | = ∫ | |||
| (x2 + 4*x + 5)2 | ((x + 2)2 + 1)2 |
| dt | t2 + 1 − t2 | |||
J = ∫ | = ∫ | dt | ||
| (t2 + 1)2 | (t2 + 1)2 |
| dt | t2dt | t2dt | ||||
J = ∫ | − ∫ | = arctg(t) − ∫ | ||||
| t2 + 1 | (t2 + 1)2 | (t2 + 1)2 |
| t2dt | tdt | |||
J1 = ∫ | = ∫t* | |||
| (t2 + 1)2 | (t2 + 1)2 |
| tdt | ||
u = t dv = | ||
| (t2 + 1)2 |
| tdt | −1 | |||
du = dt v = ∫ | = | |||
| (t2 + 1)2 | 2*(t2 + 1) |
| −t | −1 | |||
J1 = | − ∫ | dt = | ||
| 2*(t2 + 1) | 2*(t2 + 1) |
| −t | 1 | dt | −t | 1 | ||||||
J1 = | + | ∫ | = | + | *arctg(t) | |||||
| 2*(t2 + 1) | 2 | t2 + 1 | 2*(t2 + 1) | 2 |
| −t | 1 | |||
J = arctg(t) − ( | + | *arctg(t)) | ||
| 2*(t2 + 1) | 2 |
| t | 1 | |||
J = | + | *arctrg(t) | ||
| 2*(t2 + 1) | 2 |
| x + 2 | 1 | |||
J = | + | *arctg(x + 2) | ||
| 2*(x2 + 4*x + 5) | 2 |
| x+1 | 1 | 2x+2 | ||||
∫ | dx = | ∫ | dx = | |||
| (x2+4x+5)2 | 2 | (x2+4x+5)2 |
| 1 | 2x+4−2 | |||
= | ∫ | dx = | ||
| 2 | (x2+4x+5)2 |
| 1 | 2x+4 | dx | ||||
= | ∫ | dx − ∫ | = | |||
| 2 | (x2+4x+5)2 | (x2+4x+5)2 |
| dt | ||
t=x2+4x+5 , | =2x+4 , dt=(2x+4)dx | |
| dx |
| 1 | dt | dx | ||||
= | ∫ | − ∫ | = | |||
| 2 | t2 | ((x+2)2+1)2 |
| −1 | dx | |||
= | − ∫ | = | ||
| 2(x2+4x+5) | ((x+2)2+1)2 |
| dx | ||
∫ | = | |
| ((x+2)2+1)2 |
| dt | ||
t=x+2 , | =1, dt=dx | |
| dx |
| dt | t2+1−t2 | |||
∫ | = ∫ | dt = | ||
| (t2+1)2 | (t2+1)2 |
| t2+1 | t2 | |||
= ∫ | dt − ∫ | dt = | ||
| (t2+1)2 | (t2+1)2 |
| dt | t2 | t | ||||
= ∫ | − ∫ | dt = arctg(t) − ∫ t* | dt = | |||
| t2+1 | (t2+1)2 | (t2+1)2 |
| t | −1 | |||
= arctg(x+2) − ∫ t* | dt = arctg(x+2) − ∫ t*( | )' dt = | ||
| (t2+1)2 | 2(t2+1) |
| t | −1 | |||
f'(t)= | , f(t)= | , g(t)=t, g'(t)=1 | ||
| (t2+1)2 | 2(t2+1) |
| t | 1 | dt | ||||
= arctg(x+2) + | − | ∫ | = | |||
| 2(t2+1) | 2 | t2+1 |
| x+2 | 1 | |||
= arctg(x+2) + | − | arctg(t) = | ||
| 2((x+2)2+1) | 2 |
| x+2 | 1 | |||
= arctg(x+2) + | − | arctg(x+2) = | ||
| 2(x2+4x+5) | 2 |
| 1 | x+2 | |||
= | arctg(x+2) + | |||
| 2 | 2(x2+4x+5) |
| −1 | 1 | x+2 | ||||
= | − | arctg(x+2) − | = | |||
| 2(x2+4x+5) | 2 | 2(x2+4x+5) |
| 1 | x+3 | |||
= − | arctg(x+2) − | |||
| 2 | 2(x2+4x+5) |
| 1 | x+3 | |||
(− | arctg(x+2) − | )' = | ||
| 2 | 2(x2+4x+5) |
| −1 | 1 | 2(x2+4x+5)−2(x+3)(2x+4) | ||||
= | * | − | = | |||
| 2 | 1+(x+2)2 | 4(x2+4x+5)2 |
| −1 | x2+4x+5−(2x2+4x+6x+12) | |||
= | − | = | ||
| 2(x2+4x+5) | 2(x2+4x+5)2 |
| −x2−4x−5 | x2+4x+5−2x2−10x−12 | |||
= | − | = | ||
| 2(x2+4x+5)2 | 2(x2+4x+5)2 |
| −x2−4x−5 | −x2−6x−7 | |||
= | − | = | ||
| 2(x2+4x+5)2 | 2(x2+4x+5)2 |
| −x2−4x−5+x2+6x+7 | ||
= | = | |
| 2(x2+4x+5)2 |
| 2x+2 | x+1 | |||
= | = | |||
| 2(x2+4x+5)2 | (x2+4x+5)2 |
, ach...
Dobra Wielkie dzięki jeszcze raz dla Basi, Mickej'a oraz AS'a naprawdę pomogliście mi i to
bardzo