| 2t−t2 | ||
Podstawienie x= | ||
| 1−t2 |
| 2t2(2−t)2 | ||
−∫ | dt | |
| (1−t2)3 |
| t2−1 | ||
x= | ||
| 2t−1 |
| 2t2−t−t2+1 | ||
t−x= | ||
| 2t−1 |
| t2−t+1 | ||
t−x= | ||
| 2t−1 |
| 2t(2t−1)−2(t2−1) | ||
dx= | dt | |
| (2t−1)2 |
| 2t2−2t+2 | ||
dx= | dt | |
| (2t−1)2 |
| (t2−1)2 | 2t−1 | 2(t2−t+1) | ||
∫ | dt | |||
| (2t−1)2 | t2−t+1 | (2t−1)2 |
| (t2−1)2 | ||
2∫ | dt | |
| (2t−1)3 |
| 1 | (2t−1)4+4(2t−1)3−2(2t−1)2−12(2t−1)+9 | ||
∫ | dt | ||
| 8 | (2t−1)3 |
| 1 | dt | dt | dt | ||||
(∫(2t−1)dt+4∫dt−2∫ | −12∫ | +9∫ | ) | ||||
| 8 | 2t−1 | (2t−1)2 | (2t−1)3 |
| 1 | 1 | 6 | 9 | 1 | ||||
( | (2t−1)2+2(2t−1)+ | − | −ln|2t−1|)+C | |||||
| 8 | 4 | 2t−1 | 4 | (2t−1)2 |